Fig. 4 represents for a 3% iron in palladium sample the digital record of the counting rate at the two velocities as a function of the sample temperature at 0 and 60 kbar. The solid lines are computer fits to the data using a theory which takes into account a Gaussian distribution of local Curie temperatures [4] and which simultaneously correlates both counting rates. For 0 kbar, the fit gives $T_C = 86.2 \pm 0.3$ K and a Gaussian width of 2.3 K. For 60 kbar, the respective values are 80.9 \pm 0.5 K and 2.6 K. Therefore, the difference $\Delta T_C = -5.3 \pm 0.6$ K is determined with an accuracy comparable to that of the pressure.

In a similar manner, transition pressures or reaction rates could be studied by scanning in pressure or time.

Financial support of part of this work by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References: [1] Holzapfel, W.B., Cohen, J.A., Drickamer, H.G.: Phys. Rev. 187, 657 (1967). — [2] Syassen, K., Christoe, C.W., Holzapfel, W.B.: Z. f. Angew. Phys. — [3] Cohen, R. L., McMullin, P.G., Wertheim, G.K.: Rev. Sci. Instr. 34, 671 (1963). — [4] Dunlap, B.D., Dash, J.G.: Phys. Rev. 155, 460 (1967).

Dr. Charles W. Christoe Albert Forster und Dr. Wilfried B. Holzapfel Physik-Department E 15 der TU München BRD-8046 Garching, Germany Druck: Brühlsche Universitätsdruckerei Gießen